Brainspotting

New, minimally invasive techniques for seeing deep inside living brains

Written byAmber Dance
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Philip Liu with a high-resolution MRI image demonstrating gene transcription in a mouse brain using RNA labeled with superpara­magnetic iron oxide nanoparticles (dark areas indicate the presence of the RNA of interest). LAURIE LIZOTTE/REMS MEDIA SERVICES

Neuroimaging isn’t just about pretty pictures anymore. Microscopists and other imaging scientists are now looking beyond mere anatomy, gleaning vital information about in vivo brain activity from their digital films. They can see where blood flow speeds up, when nerves fire, and what genes are switched on in a cell—all, crucially, without resorting to slicing up the brain.

In the 21st-century neuroimaging lab, mice are running around with lightweight microscopes mounted to their craniums. Scientists are using advanced techniques that rely on natural contrast instead of fluorescent markers. They are revamping an old method, ultrasound, to obtain detailed images of brain blood flow. Furthermore, researchers are combining molecular tools with standard imaging modes in new ways to track cells’ behavior, scalpel-free.

Driving the development of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH