Caloric Restriction Turns White Fat Brown

Limiting food intake leads to the conversion of white fat cells into more metabolically active brown fat cells through an immune response, a mouse study shows.

Written byAlison F. Takemura
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Infrared imaging of a calorie-restricted mouseUNIVERSITY OF GENEVA, SALVATORE FABBIANO (CELL METABOLISM 24:1-13)In mice, severely restricting caloric intake promotes the transformation of white fat into brown fat, which contains cells that burn energy faster, according to a study published today (August 25) in Cell Metabolism. The innate immune system, researchers from the University of Geneva, Switzerland, and their colleagues reported, mediates this fat cell-transforming effect.

“The paper nicely characterizes this phenomenon,” said Ajay Chawla of the University of California, San Francisco, who was not involved in the work. “And it mechanistically seems to identify a pathway that we had identified.”

Whereas the present study found diet induced a “beiging” phenotype—in which white adipose tissue starts to express more energy-expending brown fat cells—Chawla and colleagues had previously shown that cold temperatures, another extreme condition, can produce the same effect.

Scientists are keenly interested in learning how to generate brown fat cells. A treatment could help stem the obesity epidemic. “Finding some mechanism to activate this response—ideally, in obese or diabetic individuals—is really attractive,” said postdoctoral researcher Salvatore Fabbiano of the University of Geneva who led the present study.

Several conditions are ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH