Can Amyloid Spread Between Brains?

A study of deceased patients who received injections of cadaver-derived growth hormone hints at the possible transmissibility of Alzheimer’s disease.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, ALLAN AJIFOExamining the brains of recently deceased patients who more than 30 years ago received injections of growth hormone derived from the pituitary glands of cadavers, researchers have found evidence that Alzheimer’s disease (AD) may be transmissible via extracts contaminated with amyloid-β. While none of the patients exhibited signs of dementia before their deaths, most had moderate to severe accumulation of amyloid-β in their brains. The results are published today (September 9) in Nature.

“It’s the first in-human indication of potential transmission of amyloid-β pathology,” said Claudio Soto of the University of Texas Health Science Center in Houston who was not involved in the study.

The results are “extremely provocative,” said neurologist and neuroscientist Costantino Iadecola, director of the Feil Family Brain and Mind Research Institute at Weill Cornell Medical College who also was not involved in the study. “The implications . . . are really astounding. They range from the way we should behave in the operating room all the way to the basic mechanistic questions that are still unsolved in Alzheimer’s disease.”

Before a synthetic growth hormone was created in 1985, patients with growth deficiencies were often treated with growth hormone extracted from homogenized human pituitary glands ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide