Cargo-Sorting DNA Robots

Autonomous molecules that collect, carry, and sort different genetic packages usher in a new era for nucleic-acid robotics.

ruth williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Conceptual illustration of two DNA robots collecting and sorting cargoDEMIN LIU (WWW.MOLGRAPHICS.COM)Walking across a precisely folded DNA landscape, a teeny tiny robot picks up a molecular payload, drops it off at a defined delivery address, then heads off to retrieve and sort more molecules. This is not the opening scene of a new sci-fi movie, it’s the outcome of a very real bioengineering project reported today (September 14) in Science. What’s more, these robots find and sort the molecules without human micromanagement.

“The design of the robots is incredibly elegant. . . . It has great simplicity, but the robots can nevertheless do non-trivial things,” says computer scientist John Reif of Duke University who was not involved in the project. “This is beautiful research that has taken the field of DNA robotics to a new stage.”

DNA is a wonderful building material. So much is understood about this nucleic acid’s chemical and physical properties that it is possible to predict with great accuracy the folding and topography of a given nucleotide sequence and how it will bind through Watson and Crick base-pairing to other sequences. Indeed, researchers are busy designing and creating complex two- and three- dimensional DNA patterns and structures for a variety of potential applications.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide