Caught in the Act

Molecular probes for imaging in live animals

Written byDevika G. Bansal
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

VISUALIZING REACTIVE OXYGEN MOLECULES: To detect endogenous hydrogen peroxide in live animals, Kanyi Pu and colleagues constructed a chemiluminescent probe tucked inside a semiconducting polymer nanoparticle (SPN). The yellow cylinders denote the substrate, and the red pyramid denotes a dye that allows the probe to emit in the near-infrared range (below). The scientists tested the probe in a mouse model of neuroinflammation?(above). From left to right, the images show mice treated with saline, lipopolysaccharide alone, which causes inflammation, or lipopolysaccharide with glutathione, which abates the injury. The probe lights up to mark peroxide levels in inflamed brain tissues.ACS NANO, 10:6400-09, 2016

The ability to peer at molecular processes as they unfold in vivo can deliver invaluable insights to researchers. Molecules that shuttle through living cells are often vital biomarkers of disease conditions, and capturing tiny quantitative changes in their levels is an essential part of diagnosis in the era of precision medicine. What’s more, dynamic monitoring of physiological changes can also help track and adjust drug treatments during preclinical studies.

In order to get a bead on key molecules that signal disruptions in regular cell functions, scientists need to cast a wide net. MRI, PET, and CT imaging are useful tools to visualize and measure cellular processes, but they are vastly more expensive than light-based imaging techniques.

A variety of fluorescent probes are available to detect specific molecules and monitor their activities. But optical imaging in living animals has mostly been limited to the study of skin, eyes, surface vessels, and epithelial tissues accessible to visible light. In recent years, however, investigators have been developing probes that work in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

November 2017

The Mosaic Brain

Functional implications of a complex neural ecosystem

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies