Caution Urged for Comparing Ancient and Modern Humans’ Oral Microbes

Microbial species that are commonly associated with oral diseases in modern humans are unreliable proxies for determining tooth health status in ancient samples, a new study finds.

Written byAlejandra Manjarrez, PhD
| 4 min read
oral microbe dental plaque calculus ancient hominin skeleton teeth

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: For this study, the researchers analyzed teeth from dozens of skeletal remains, including this jaw, which belonged to a young man who lived roughly 200 years ago. Several teeth have extensive calculus covering the tooth crown.
IRINA M. VELSKO

By scraping the teeth of our ancestors and looking at the microbes on them, scientists have sought to reconstruct the lives of ancient hominins, in particular, what type of diseases they faced. But a recent study challenges one of the assumptions in the field: that we can use our knowledge about modern humans’ dental plaque—the sticky biofilm attached to tooth surfaces—to understand its mineralized version, known as dental calculus, frequently found in human fossils.

The results, published July 6 in Microbiome, show that the microbial profiles of plaque and calculus are different, mainly due to the maturation stage of the biofilm found in each substrate, and using remains’ calculus to infer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies