Scientists monitor dynamic cellular events in real time with live cell imaging and detection techniques. A variety of approaches allow researchers to capture events missed by traditional methods that examine static moments in time, such as qPCR and antibody-based analyses.1-3
Many live cell methods depend on fluorescence detection. In the process of fluorescence, a molecule absorbs light and subsequently emits some of the absorbed energy as photons at a lower energy. A core principle of fluorescence-based methods, from fluorescence microscopy to flow cytometry, is separating excitation light from emitted light with optical filters. This allows scientists to effectively observe and distinguish between physiological processes corresponding to specific fluorescent molecules. Additionally, researchers must select the correct fluorescent indicators for successful live cell imaging and detection. Continual advances in fluorescent probes, dyes, and biosensors improve the power of fluorescence-based approaches, ensuring that such techniques continue to be important research tools in cell ...

















