Direct Capture of Guide RNAs Enables Scalable and Combinatorial Single-Cell CRISPR Screens

10x Genomics invites you to join them for an educational webinar.

Event Details:Direct Capture of Guide RNAs Enables Scalable and Combinatorial Single-Cell CRISPR ScreensDate(s):

FREE Webinar

Friday, July 17, 2020
2:30 - 4:00 PM, Eastern Standard Time

Register Now

Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. Recently, multiple techniques have emerged that pair CRISPR screens with high-throughput single-cell RNA sequencing (scRNA-seq), resulting in high resolution, information-rich readouts.

In this webinar brought to you by The Scientist and sponsored by 10x Genomics, Dina Finan will introduce the 10x Genomics product portfolio, including new targeted gene expression panels. Joining Dina will be Joseph Replogle who will discuss how this technology helped him and colleagues develop direct capture Perturb-seq, a new single cell CRISPR screening technique that greatly expands accessibility, scalability, and flexibility of single cell CRISPR experiments.

Topics to be covered

Register Now

Meet the Speakers:

Joseph Replogle, MD/PhD trainee
Weissman lab
UCSF/MIT


Dina Finan, PhD
Product Manager
10x Genomics

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH