Chromosome Ends in Double Jeopardy

Researchers have finally uncovered the other half of the end-replication problem at the lagging strand.

Laura Tran, PhD
| 4 min read
Image of three chromosomes trees with the highlighted section displaying telomeres shortening over time as falling leaves.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

As DNA strands ravel and unravel in an intricate dance, one notable event takes center stage: replication. This process is essential to life, but the finer details of its orchestrated steps are still being uncovered. During replication, the ends of linear DNA cannot fully replicate, causing telomeres to shorten in a well-known phenomenon called the end-replication problem.1

The discovery of telomerase in the 1980s appeared to solve this problem, where naturally occurring telomerase added single-stranded G-rich TTAGGG repeats to the telomere ends.2 However, Titia de Lange, a cell biologist and geneticist at Rockefeller University, and her team realized that it was only part of the solution. Their findings, published recently in Nature, demonstrated that while telomerase addressed the end-replication problem at the leading strand, another complex worked in tandem at the lagging strand.3 This provides insights into telomere biology in health and disease.

Hiroyuki Takai, a cell biologist and geneticist in de Lange’s group, made the unexpected discovery while studying the lagging strand in cells that lacked a molecular complex comprised of a protein group, CTC1–STN1–TEN1 (CST), bound to polymerase α-primase (Polα-primase). CST-Polα-primase is telomerase’s counterpart on the lagging strand that adds C-rich CCCTAA repeats to telomere ends. However, when Takai studied telomeres in cells lacking the CTC1 gene, which disabled CST-Polα-primase, he produced a gel that did not fit the established model. The expected fill-in synthesis was incomplete. “Regular replication of the telomere was supposed to keep up with telomerase and elongate during DNA replication, but it was clear that this was not the case,” remarked de Lange.

In Takai’s experiments, DNA replication proceeded where the leading strand synthesis created a blunt end and telomerase elongated the G strand as expected; however, the fill-in synthesis of the C-rich strand via short DNA fragments (Okazaki fragments) surprisingly could not keep up in these cells. “Not only did it not elongate, but it also got shorter,” said de Lange.

Headshot of Titia de Lange.
Titia de Lange, a cell biologist and geneticist at Rockefeller University, studies telomeres, which are critical for genome integrity.
The Rockefeller University

Normally for the lagging strand, DNA synthesis is unhindered, and the replisome starts synthesizing the last Okazaki fragments along the 3’ overhang that are later stitched together to prevent sequence loss. However, nobody knew exactly what happened to the replisome once it reached the end of the DNA. Since Takai’s findings suggested that the replisome fell short of the last Okazaki fragment and led to inadequate primer synthesis along the lagging strand, it was worth investigating. Perplexed, de Lange contacted Joseph Yeeles, a biochemist at the Medical Research Council Laboratory of Molecular Biology, to take a closer look at the replisome during this event.

To study DNA replication in vitro, Yeeles assembled replisomes with Saccharomyces cerevisiae proteins capable of performing complete leading- and lagging-strand replication. He observed that the replisomes initiated Okazaki fragments within 150-200 nucleotides of the ends of the templates but stopped short around 20 nucleotides from the ends of the leading-strand templates. “[The replisome] just can’t do it. It cannot get its foot on the last bit of DNA before falling off,” remarked de Lange. This shortening of the lagging-end telomeres supported the existence of a second end-replication problem.

Takai sought to confirm Yeeles’ findings in vivo. Previous work by de Lange’s team and others explored the effect of disabling CST-Polα-primase; however, the rate and cause of shortening at the telomeric sites remained unclear.4 Takai isolated and measured sequence loss at the leading- and lagging-end telomeres in cells that lacked CTC1. By using a cesium chloride gradient, Takai saw results that echoed Yeeles’ in vitro analysis: the G strand grew while the C strand shortened. This reinforced the inability of the lagging strand to reach the same length as its counterpart.

Telomerase prevented shortening at the leading strand while CST-Polα-primase addressed the same problem at the lagging strand. With CST-Polα-primase, the complex counteracted the loss of approximately 76 nucleotides in the C-strand, underscoring its role in telomere biology. “This study highlights a second telomere maintenance machinery,” remarked Ci Ji Lim, a molecular cell biologist at the University of Wisconsin-Madison who was not involved in the study. “It’s a watershed announcement that presents a bird’s eye view and appreciation for not just telomerase, but for other less known proteins like CST-Polα-primase.”

“This is great for the field because there’s a framework where researchers can fill in the molecular details. So, I expect that we’ll learn a lot more about C strand fill-in down the road,” remarked Lim.

de Lange and her team aim to further explore the structural biology of key regulators of telomerase and identify the kinase critical for end replication. They hope that these findings also provide insight into clinical implications for individuals with telomere disorders.

Keywords

Meet the Author

  • Laura Tran, PhD

    Laura Tran, PhD

    Laura is an Assistant Editor for The Scientist. She has a background in microbiology. Her science communication work spans journalism and public engagement.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome