Could Manipulating the Microbiome Treat Food Allergies?

As evidence grows that gut bacteria play roles in the development and persistence of food allergies, researchers begin to explore microbe-based interventions.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: THE SCIENTIST STAFF

University of Chicago immunologist Cathryn Nagler began to suspect that the body’s resident bacteria play a role in food allergies almost two decades ago. A handful of studies of germfree mice in the 1980s and ’90s had suggested that bacteria in the gut, or compounds they produce, such as lipopolysaccharide (LPS), are important in teaching the immune system not to overreact to the foods we eat. But it was a new mouse model of peanut allergy, developed by researchers at Mount Sinai School of Medicine in New York in 2000, that really made Nagler think about whether the gut microbiome might be involved in how humans respond to dietary antigens.

The mouse strain they used, C3H/HeJ, carried a mutation in the toll-like receptor 4 (TLR4). This protein had recently been shown to mediate immune responses triggered by a bacterial antigen known as lipopolysaccharide (LPS), and the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

An illustration of different-shaped bacteria.

Leveraging PCR for Rapid Sterility Testing

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions