CRISPR Corrects Sickle Cell-Causing Gene in Human Cells

Once implanted in mice, the edited stem cells produced normal hemoglobin.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, DIANA GRIBScientists have used the CRISPR-Cas9 gene-editing technique to rewrite the genetic mutation in blood cells that causes sickle cell disease. Once these treated hematopoietic progenitors, which had been harvested from patients, were given to mice, the cells began to produce healthy hemoglobin.

“What we have right now, if we can scale it up and make sure it works well, is already enough to form the basis of a clinical trial to cure sickle cell disease with gene editing,” study coauthor Mark DeWitt, a postdoctoral fellow at the University of California, Berkeley, told The Los Angeles Times. His team published its results yesterday (October 12) in Science Translational Medicine.

As STAT News pointed out, the technique is not 100 percent efficient. Only a fraction of the treated cells successfully ended up with the right edits; and only 2 percent to 6 percent of the corrected cells retained the edits after 16 weeks once administered to the mice. “A few percent might seem low, said Jacob Corn, scientific director ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH