CRISPR to Debut in Clinical Trials

The first industry-sponsored CRISPR therapy is slated to be tested in humans in 2018.

Written byDiana Kwon
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ISTOCK, BUBAONELast Thursday (December 7), CRISPR Therapeutics submitted an application to European regulatory authorities seeking permission to begin clinical trials for CTX001, an investigational CRISPR treatment for patients with sickle cell disease and β thalassemia.

CRISPR Therapeutics, the company cofounded by Emmanuel Charpentier—one of the developers of CRISPR gene editing technology—plans to start a Europe-based Phase 1/2 trial for patients with β thalassemia in 2018. “I think it’s a momentous occasion for us, but also for the field in general,” Samarth Kulkarni, CEO of the company, tells Wired. “Just three years ago we were talking about CRISPR-based treatments as sci-fi fantasy, but here we are.”

The firm also plans to apply for US Food and Drug Administration approval to use the treatment for sickle cell disease early next year.

Patients with sickle cell disease and β thalassemia possess mutations in a gene that produces a subunit of hemoglobin, an oxygen-transporting protein in the blood. CTX001 works by cleaving BCL11A, a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies