Cross-Sample Sequencing Contamination Galore

Scientists conducting a large-scale, comparative transcriptomics project have inadvertently highlighted widespread contamination in sequencing data.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, SHAURY NASHSubcontracted nucleic acid sequencing can be a source of extensive cross-sample contamination, warn the authors of a report published in BMC Biology last week (March 29). Approximately 80 percent of RNA samples collected from 180 different species as part of an evolutionary study became tainted with RNA sequences from other species, according to the authors. And most of this contamination occurred when the samples were sent to companies for sequencing.

“The important take-home message is that all molecular biologists . . . need to consider contamination of research materials as a risk. None of us are immune to contamination, no matter how experienced we are or how good our technique. We need to be aware that our precious research materials may become contaminated, and think about ways to manage that risk,” Amanda Capes-Davis of CellBank Australia who was not involved with the research wrote in an email to The Scientist.

Study coauthor Marion Ballenghien was well aware of these risks. While working as a researcher in the lab of Nicolas Galtier at the Montpellier Institute of Evolutionary Sciences in France, Ballenghien was tasked with collecting and preparing hundreds of RNA samples from a variety of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH