Cross-Sample Sequencing Contamination Galore

Scientists conducting a large-scale, comparative transcriptomics project have inadvertently highlighted widespread contamination in sequencing data.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, SHAURY NASHSubcontracted nucleic acid sequencing can be a source of extensive cross-sample contamination, warn the authors of a report published in BMC Biology last week (March 29). Approximately 80 percent of RNA samples collected from 180 different species as part of an evolutionary study became tainted with RNA sequences from other species, according to the authors. And most of this contamination occurred when the samples were sent to companies for sequencing.

“The important take-home message is that all molecular biologists . . . need to consider contamination of research materials as a risk. None of us are immune to contamination, no matter how experienced we are or how good our technique. We need to be aware that our precious research materials may become contaminated, and think about ways to manage that risk,” Amanda Capes-Davis of CellBank Australia who was not involved with the research wrote in an email to The Scientist.

Study coauthor Marion Ballenghien was well aware of these risks. While working as a researcher in the lab of Nicolas Galtier at the Montpellier Institute of Evolutionary Sciences in France, Ballenghien was tasked with collecting and preparing hundreds of RNA samples from a variety of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio