Crowdsourced Protein Simulation Exceeds Supercomputers’ Power

Folding@Home, currently focused on deciphering the workings of SARS-CoV-2, is the first project to have exascale-level computational muscle.

Written byShawna Williams
| 2 min read
an illustration of the coronavirus with a world map in the background

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, GRAFISSIMO

A two-decade-old effort to predict protein folding based on an amino acid sequence using a network of computers and gaming consoles has crossed a threshold of computational power known as the exaFLOP barrier, project organizers announced on Twitter March 25. This is due in part to a burst in users in recent months responding to the need to understand SARS-CoV-2, the virus behind the coronavirus pandemic. The project, Folding@Home, can now perform more than 1,000,000,000,000,000,000 operations per second—multiple times more than the world’s most powerful supercomputer.

Folding@Home began when then–Stanford University chemistry professor Vijay Pande began to enlist users of computers and gaming consoles to add their machines to a network that enabled them to perform computations for the project when not otherwise in use. Over the years, the crowdsourced endeavor has led to 223 publications on protein structures, according to the project’s website, including investigations ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control