ABOVE: © ISTOCK.COM, GRAFISSIMO
A two-decade-old effort to predict protein folding based on an amino acid sequence using a network of computers and gaming consoles has crossed a threshold of computational power known as the exaFLOP barrier, project organizers announced on Twitter March 25. This is due in part to a burst in users in recent months responding to the need to understand SARS-CoV-2, the virus behind the coronavirus pandemic. The project, Folding@Home, can now perform more than 1,000,000,000,000,000,000 operations per second—multiple times more than the world’s most powerful supercomputer.
Folding@Home began when then–Stanford University chemistry professor Vijay Pande began to enlist users of computers and gaming consoles to add their machines to a network that enabled them to perform computations for the project when not otherwise in use. Over the years, the crowdsourced endeavor has led to 223 publications on protein structures, according to the project’s website, including investigations ...