Sounding Out Cell Stickiness

Acoustic forces can be used to differentiate adherent from non-adherent cells.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Just as music pulls some folks to the dance floor while others remain stuck to their chairs, sound can now be used to pull some cells loose from their substrate while other cells stay put. Cells attach and release from the extracellular matrix and from each other for a variety of physiological reasons. But existing methods to measure the intensity and kinetics of these interactions either lack precision or are exceptionally laborious, explains molecular biophysicist Gijs Wuite of Vrije Universiteit in Amsterdam.

While thinking of ways to achieve both accuracy and high throughput, Wuite says, he saw a movie showing microscopic organisms being manipulated with sound waves. He wondered whether such acoustic forces could also be used to explore molecular and cellular interactions.

So Wuite and colleagues developed single-cell acoustic force spectroscopy (scAFS), which uses acoustic waves to test whether cells are adhered to a given substrate (cells or molecules) ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

December 2018

Invisible Borders

An emerging appreciation for membraneless organelles and the liquid dynamics that shape them

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide