Decoding Breast Cancer Drug Resistance

Common mutations in metastasized breast tumors suggest how the cancer can develop resistance to frontline drugs.

Written byEd Yong
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Estrogen receptorWIKIPEDIA, BOGHOG2Estrogen is so intimately involved in breast cancer that drugs which disrupt the hormone’s actions have become frontline treatments for the disease. These so-called “hormonal therapies” include tamoxifen and fulvestrant, which directly block the estrogen receptor (ER), and aromatase inhibitors like anastrazole, which prevent the body from making estrogen in the first place.

These drugs have been incredibly successful, but for reasons that are still unclear, patients often develop resistance to them, especially when their tumors migrate—metastasize—to other organs.

Now, two independent teams have discovered that mutations in ESR1—the gene that encodes the ER—could be an important route to resistance. Their results, published today (November 3) in Nature Genetics, vindicate decades of work from other scientists and reveal new clues about the basic biology of breast cancer. They also suggest that researchers may be able to treat resistant tumors that harbor these mutations by developing new drugs that block the ER more fully than current compounds do.

The two teams, led respectively by Sarat Chandarlapaty at Memorial Sloan-Kettering Cancer Center and Arul Chinnaiyan at the University of Michigan, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH