Deforestation Tied to Changes in Disease Dynamics

Numerous studies link habitat destruction to malaria and other vector-borne diseases, but the relationship isn’t always clear.

Written byKatarina Zimmer
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

ABOVE: © ISTOCK.COM, VAARA

When a malaria outbreak erupted in Malaysian Borneo in 2002, researchers were surprised to find that the culprit wasn’t Plasmodium malariae, the main mosquito-borne parasite known to infect humans in the area. Instead, the parasite’s DNA turned out to stem from P. knowlesi, colloquially known as “monkey malaria,” which is specialized to infect and proliferate in forest-dwelling macaques. A few accidental cases had been recorded in people over the years, but such an outbreak was unusual. And it didn’t stop there: P. knowlesi has since become the most common cause of malaria in Malaysia, and human infections are steadily rising throughout Southeast Asia.

It’s one of several instances of vector-borne pathogens that have popped up in humans in areas that are undergoing widespread deforestation. The forests of Borneo are being felled at a rapid rate, foremost to make way for palm oil plantations. Researchers have long ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH