DNA Sequencing: From Tedious to Automatic

Sequencing has gone from a laborious manual task costing thousands of dollars to a quick and cheap practice that is standard for many laboratories.

| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

TOP ROW, L TO R: COURTESY OF KELLEY FOYIL; WIKIMEDIA COMMONS/BOB GOLDSTEIN, UNC CHAPEL HILL; COURTESY OF INSTITUTE FOR SYSTEMS BIOLOGY. BOTTOM ROW: COURTESY OF OXFORD NANOPORE

University of Oklahoma graduate student Richard Wilson spent the early 1980s reading DNA. First he’d add four radioactively labeled synthesis-terminating nucleotides—one corresponding to each of the four natural bases—to mixtures of DNA fragments. He’d then load fragments treated with different radioactive bases into separate wells of a polyacrylamide gel and use electrophoresis to separate the strands into a pattern that reflected their length, and, consequently, where the unnatural bases had incorporated. “It was all very manual,” recalls Wilson, now director of the McDonnell Genome Institute at Washington University in St. Louis. “We used to get the sequencing gels running, go have dinner and probably a few beers. Then we’d come back to the lab around two in the morning, take the gels down, put X-ray ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.

Published In

October 2016

30th Anniversary Issue

How life science research has changed since 1986

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio