TOP ROW, L TO R: COURTESY OF KELLEY FOYIL; WIKIMEDIA COMMONS/BOB GOLDSTEIN, UNC CHAPEL HILL; COURTESY OF INSTITUTE FOR SYSTEMS BIOLOGY. BOTTOM ROW: COURTESY OF OXFORD NANOPORE
University of Oklahoma graduate student Richard Wilson spent the early 1980s reading DNA. First he’d add four radioactively labeled synthesis-terminating nucleotides—one corresponding to each of the four natural bases—to mixtures of DNA fragments. He’d then load fragments treated with different radioactive bases into separate wells of a polyacrylamide gel and use electrophoresis to separate the strands into a pattern that reflected their length, and, consequently, where the unnatural bases had incorporated. “It was all very manual,” recalls Wilson, now director of the McDonnell Genome Institute at Washington University in St. Louis. “We used to get the sequencing gels running, go have dinner and probably a few beers. Then we’d come back to the lab around two in the morning, take the gels down, put X-ray ...