Down but Not Out

Cells on standby are surprisingly busy.

Written byRichard P. Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZENormal cells do not grow and divide forever. Even before they get old and die, many cells in the body are quiescent: temporarily out of the proliferative cell cycle, waiting for a signal to wake up and become active again. Cells grown in culture will also enter such a state, either because they’re too crowded or have run out of nutrients. Princeton University’s Hilary Coller recently found that some of these cells are surprisingly metabolically active, even while not proliferating.

Previous work on lymphocytes, Coller says, suggested that quiescence is associated with a “sleepy metabolic state” during which cells take up less glucose and excrete fewer waste products, such as lactate. Whereas a proliferating cell has to replicate all of its contents in order to divide, quiescent cells don’t make new proteins, lipids or organelles, and aren’t replicating DNA.

Coller says that quiescence must be “fundamentally important,” because many cells normally spend long periods in this state, awaiting activation. Immunological memory depends on resting lymphocytes being ready to proliferate when exposed to a familiar antigen, fibroblasts slumbering in the skin need to activate to heal wounds, liver regeneration depends on activation of quiescent hepatocytes, and germ cells can spend many years waiting for their moment. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery