Drug Cocktail Triggers Regeneration of Amputated Frog Legs

A new chemical treatment allowed African clawed frogs, which normally don’t regenerate limbs, to regrow functional hind legs following amputation.

Written byDan Robitzski
| 3 min read
A frog partially submerged in water looking straight ahead
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Among vertebrates, the ability to regenerate functional limbs or other body parts is rare. Salamanders can regrow entire limbs, deer grow new antlers, and zebrafish can regrow large portions of their hearts. Now, research published in Science Advances today (January 26) reveals a possible way to trigger functional limb regeneration for animals that normally can’t pull it off. In the study, African clawed frogs (Xenopus laevis) that had a hind leg amputated and then were treated with regenerative drugs grew new legs that functioned similarly to those of frogs that never lost a leg in the first place.

After amputating 115 female frogs’ right hind legs, the researchers divided the frogs into three groups, each of which received different treatments, according to the paper. In addition to a control group, one group of frogs had their stump encapsulated and sealed off in a small silicon cap that the researchers call ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems