Drug Cocktail Triggers Regeneration of Amputated Frog Legs

A new chemical treatment allowed African clawed frogs, which normally don’t regenerate limbs, to regrow functional hind legs following amputation.

Written byDan Robitzski
| 3 min read
A frog partially submerged in water looking straight ahead
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Among vertebrates, the ability to regenerate functional limbs or other body parts is rare. Salamanders can regrow entire limbs, deer grow new antlers, and zebrafish can regrow large portions of their hearts. Now, research published in Science Advances today (January 26) reveals a possible way to trigger functional limb regeneration for animals that normally can’t pull it off. In the study, African clawed frogs (Xenopus laevis) that had a hind leg amputated and then were treated with regenerative drugs grew new legs that functioned similarly to those of frogs that never lost a leg in the first place.

After amputating 115 female frogs’ right hind legs, the researchers divided the frogs into three groups, each of which received different treatments, according to the paper. In addition to a control group, one group of frogs had their stump encapsulated and sealed off in a small silicon cap that the researchers call ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research