Drug Discovery Techniques Open the Door to RNA-targeted Drugs

New ways to search for druggable RNAs and matching small molecules

| 8 min read
RNAs

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

ABOVE: © istock.com, selvanegra

A sizable slice of the drug development pie is an exercise in targeting proteins. Find an active site or pocket on a problematic protein, stuff in a small molecule to interfere with that protein’s function, and, if all goes well, treat the disease caused by that malfunctioning macromolecule.

But only about 15 percent of proteins have such a convenient pocket or active site, leading the rest to be considered “undruggable.” Several researchers and drug developers are realizing that the solution might be to target disease-linked proteins at the RNA level instead (See “Scientists Take Aim at Disease-Causing RNAs Using Small-Molecule Drugs,” The Scientist, April 2019).

Messenger RNAs are one obvious target, because they encode proteins and even interfere with cellular processes directly in some diseases. But other RNAs are in some drug developers’ sights: noncoding RNAs, such as microRNAs that regulate gene expression, could be worth ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amber Dance

    Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

Published In

living with bacteria 2019 the scientist june issue
June 2019

Living with Bacteria

Can pathogens be converted to commensals?

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours