Drug Helps Plants Resist Drought: Study

The small molecule is effective in tomato and wheat in laboratory trials, but its scalability and applicability to real-world agriculture remains to be seen.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Representation of opabactin bound at two different locations (dashed yellow lines) to an ABA receptor.
SEAN CUTLER, UC RIVERSIDE

An engineered small molecule called opabactin that targets the receptor for the hormone abscisic acid (ABA), which plants release in stressful conditions, limited water loss in Arabidopsis, tomato, and wheat, and improved wheat’s tolerance of drought-like conditions in the lab, according to a study published today (October 24) in Science. It could be a novel strategy for helping crops cope with the increased numbers of droughts that researchers predict as the climate changes, the authors say, but must be evaluated for toxicity and environmental impact before use in field tests.

The study is “a beautiful representation of how powerful the interface between chemistry and biology can be, and how it can be utilized to study water use efficiency in plants, which is a crucial topic in the current global climate,” Cara ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis