Early 3-D Image Analysis Revealed Surprising Symmetry in the Nuclear Pore

In 1992, advancements in microscopy zoomed in on the precise architecture of the complex, including unforeseen structural repetition in two halves of the ring.

Written byBen Andrew Henry
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

STATE OF THE ART: Using a novel combination of imaging techniques, Ronald Milligan, a cell biologist at the Scripps Research Institute, and two of his colleagues published this model of a Xenopus laevis nuclear pore in 1992. Rather than examining one electron micrograph at a time, the researchers averaged many images together for more-reliable results. And by tilting their samples at various angles, they were able to translate flat images into a three-dimensional model, revealing an unexpected dimension of symmetry.CELL, 69:1133-41, 1992, COURTESY RON MILLIGANWhen he was a postdoc in the 1970s, Ronald Milligan came across a grainy electron micrograph in a textbook that depicted the nuclear pore complex, a relatively unstudied but crucial structure responsible for shuttling molecules in and out of the nucleus. The blurry image, published in 1974 by Alexander Fabergé of the University of Texas at Austin, showed something remarkable: the pores seemed fashioned out of eight identical parts. “I remember taking it back to my advisor and saying, ‘Look at this!’” he recalls, and they launched their pursuit of a better image.

Milligan was taken in by indications that this tiny gateway had a symmetrical design. From sea anemones to flower petals, symmetry is everywhere in nature, and scientists were only just beginning to open a window onto the molecular world, revealing its varied architecture through advances in microscopy. Even those early images of the nuclear pore “are so dramatic,” Milligan says. “Everyone is drawn to them. They’re like little flowers.”

Images produced by Milligan and others over the next decade revealed only a fuzzy ring, and “very few of them gave these hints of eightfold symmetry.” It was not until 1992 that Milligan finally resolved the basic shape and structure of this mysterious portal in the nuclear membrane. Milligan had just established a molecular microscopy lab ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

December 2016

Traffic Cops

The structure and function of nuclear pores

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies