Ebola Lurking in Brain Fluid Kills Monkeys Weeks After Recovery

New research reveals where the virus was hiding and hints at how to truly purge it from the body.

Written byDan Robitzski
| 4 min read
Artist’s rendering of a light purple Ebola virus looping around itself that’s surrounded by red blood cells
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

A new study in macaques sheds light on how the Ebola virus can persist in the brains of survivors even after they’ve been vaccinated, treated with FDA-approved monoclonal antibody therapies, or both.

There’s a growing body of evidence suggesting that Ebola can lurk in the body for long periods of time, evading the immune system as well as available therapeutics. Reports from Ebola outbreaks document survivors that relapse, falling ill and sometimes dying months or even years after they’ve recovered from their acute illness. Macaque and human studies have also shown that the Ebola virus can persist long-term in the eyes, brain, and testes of survivors. Research published today (February 9) in Science Translational Medicine sheds new light on this process: scientists found the virus in the ventricles—cavities in the brain that produce and circulate cerebrospinal fluid (CSF)—of several macaques that were treated for and appeared to have made complete ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH