Engineered Microbe in Bees’ Guts Fends off Deadly Varroa Mite

The genetically modified bacteria spark an RNAi response in the parasite that leads to self-destruction—and perhaps a path to combatting colony collapse disorder.

Written byLisa Winter
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, BO1982

Genetically altering symbiotic gut bacteria in honey bees is successful at killing varroa mites, which tend to make bees sick and leave them at an increased risk of colony collapse disorder, according to a study published today (January 31) in Science.

Colony collapse disorder (CCD) occurs when the majority of a hive abandons ship, leaving behind the queen, honey and pollen stores, and young, immature bees behind. Without the workforce of a full hive, the colony fails. According to the US Department of Agriculture, there does not appear to be a single cause of CCD, rather, it is likely a combination of disease, parasites, poor nutrition, pesticide exposure, and other stressors on the hive.

One possible contributor to unhealthy hives are Varroa destructor mites, an invasive species that arrived in North America in the early 1980s. Not only do these parasites feed on the bees’ fat ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Lisa joined The Scientist in 2017. As social media editor, some of her duties include creating content, managing interactions, and developing strategies for the brand’s social media presence. She also contributes to the News & Opinion section of the website. Lisa holds a degree in Biological Sciences with a concentration in genetics, cell, and developmental biology from Arizona State University and has worked in science communication since 2012.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH