Entire Fruit Fly Brain Imaged with Electron Microscopy

Synaptic connections and a new neuron type emerge in high-res images, which hold promise for mapping the complete connectome.

Written byAshley Yeager
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A database of electron microscopy images reveals the connections of the entire female fruit fly brain. In this image, types of Kenyon cells (KC) in the mushroom body main calyx are labeled by color: αβc-KCs are green, αβs-KCs are yellowish brown, and gamma-KCs are blue. The white arrows point to visible presynaptic release sites.ZHENG ET AL. 2017A 21-million-image dataset of the female fruit fly brain is offering an unprecedented view of the cells and their connections that underlie the animal’s behavior. The full-brain survey, taken by electron microscopy, allowed researchers to describe all of the neural inputs into a region of the fly’s brain linked to learning, examine how tightly neurons are clustered in the area, and identify a new cell type.

“This is the biggest whole brain imaged at high resolution,” Davi Bock of the Janelia Research Campus in Ashburn, VA, tells The Scientist. He and his colleagues published a preprint of their results on bioRxiv this month (May 22).

Past studies have produced electron microscopy images with resolution high enough to reveal the wiring of the entire brain of smaller organisms, such as a nematode or a fruit fly larva, or sections from larger animals, including parts of the fly brain or a cat’s thalamus. Imaging the complete fruit fly brain “is nearly two orders of magnitude larger than the next-largest complete brain imaged at sufficient resolution to trace synaptic connectivity,” Bock and colleagues wrote in their report.

The fruit fly brain has a three-dimensional ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control