Exploring the Epigenetics of Ethnicity

Researchers attempt to estimate how much of the human genome’s methylation patterns can be attributed to genetic ancestry.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

DNA methyltransferase catalyzes transfer of methyl group to DNAFLICKR, ENZYMLOGICWhen conducting clinical trials, researchers collect demographic data on study participants, such as gender, age, height, race and ethnicity. But while most of these traits are phenotypes that can be easily assessed or measured, race and ethnicity are social constructs that can be difficult to characterize. Researchers have questioned the usefulness of using race and ethnicity—rather than genetic ancestry—for medical applications.

To better understand how much of race/ethnicity are rooted in genetics, researchers from the University of California, San Francisco (UCSF), and their colleagues analyzed differences in methylation patterns within the genomes of Latino children. “Methylation, which is the predominant epigenomic marker within our genomes, is like a fingerprint on our DNA that can be modified by both genetic ancestry and by the environment,” Esteban Burchard, a physician-scientist at UCSF, told The Scientist.

In a study published last week (January 3) in eLife, Burchard and colleagues showed that about 75 percent of methylation signatures could be explained by the children’s genetic ancestry. The other 25 percent, however, is likely due to social or environmental factors that co-vary with self-identified race/ethnicity. The study is among the first ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH