Eyes on the Prize

A handful of stem cell therapeutics for vision disorders are showing promise in early-stage trials, and still more are in development. But there’s a long road to travel before patients see real benefit.

Written byJeffrey M. Perkel
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

REGROWING RETINAS: By culturing mouse embryonic stem cells, researchers can grow nascent retinas containing photoreceptor precursors that express the visual pigment rhodopsin (green) and the transcription factor Crx (red) and can be isolated and transplanted into adult mice.IMAGE BY ANAI GONZALEZ-CORDERIn mid-June, Newark, California–based StemCells, Inc. announced interim results of its ongoing Phase 1/2 trial for the treatment of dry age-related macular degeneration, a form of progressive blindness common in the elderly. Seven patients with advanced disease who had been dosed with the experimental therapeutic—multipotent neural stem cells derived from fetal brain tissue—showed slowed retinal atrophy at one year post-transplant, and four had not just stabilized but improved visual function, the company reported.

“They’ve actually had gains in their visual ability to sense contrast, which is the difference between light and dark,” explains Stephen Huhn, the company’s chief medical officer and vice president for central nervous system (CNS) clinical research. “It’s very powerful to see that this early in the trial.”

StemCells’ announcement is the latest in a series of promising developments in the area of cell-based therapeutics for blindness. Advanced Cell Technology (ACT) has several ongoing trials based on differentiated cells derived from human embryonic stem cells (hESCs), and last year, Japanese researchers launched the first clinical study to use induced pluripotent stem cells (iPSCs) derived from adult human cells for the treatment of age-related macular degeneration. Still other strategies are in development, and excitement is high.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies