Eyes on the Prize

A handful of stem cell therapeutics for vision disorders are showing promise in early-stage trials, and still more are in development. But there’s a long road to travel before patients see real benefit.

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

REGROWING RETINAS: By culturing mouse embryonic stem cells, researchers can grow nascent retinas containing photoreceptor precursors that express the visual pigment rhodopsin (green) and the transcription factor Crx (red) and can be isolated and transplanted into adult mice.IMAGE BY ANAI GONZALEZ-CORDERIn mid-June, Newark, California–based StemCells, Inc. announced interim results of its ongoing Phase 1/2 trial for the treatment of dry age-related macular degeneration, a form of progressive blindness common in the elderly. Seven patients with advanced disease who had been dosed with the experimental therapeutic—multipotent neural stem cells derived from fetal brain tissue—showed slowed retinal atrophy at one year post-transplant, and four had not just stabilized but improved visual function, the company reported.

“They’ve actually had gains in their visual ability to sense contrast, which is the difference between light and dark,” explains Stephen Huhn, the company’s chief medical officer and vice president for central nervous system (CNS) clinical research. “It’s very powerful to see that this early in the trial.”

StemCells’ announcement is the latest in a series of promising developments in the area of cell-based therapeutics for blindness. Advanced Cell Technology (ACT) has several ongoing trials based on differentiated cells derived from human embryonic stem cells (hESCs), and last year, Japanese researchers launched the first clinical study to use induced pluripotent stem cells (iPSCs) derived from adult human cells for the treatment of age-related macular degeneration. Still other strategies are in development, and excitement is high.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio