First In Vivo Function Found for Animal Circular RNA

Mice lacking the RNA had deregulated microRNAs in the brain, disrupted synaptic communication, and behavioral abnormalities associated with neuropsychiatric disorders.

Written byCatherine Offord
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

© CLIVEWA/SHUTTERSTOCK.COMCircular RNAs (circRNAs) have attracted growing attention in recent years, but their function in living organisms has long remained a mystery. Now, researchers report that one circRNA, Cdr1as, regulates microRNA levels in the mammalian brain, and that its removal results in abnormal neuronal activity and behavioral impairments in mice. The findings were published today (August 10) in Science.

“There are few papers where you can really say it’s a breakthrough,” says Sebastian Kadener, a neuroscientist and circRNA researcher at Brandeis University who was not involved in the work. “But this paper is really exciting. It’s the first real demonstration of a function of these molecules in vivo in an animal.”

CircRNAs, or simply “circles,” are formed when one or more exons or introns are “back-spliced” into a loop instead of a linear transcript. Once thought to be the result of errors in gene expression, hundreds of circles are now known to be specifically expressed, and are conserved across animal species.

Cdr1as, a circRNA that is highly expressed in the mammalian brain, is one of the best characterized circles to date. When the Max ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies