From Bench to Boardroom

Taking inspiration from her PhD research, Ana Moreno formed a company where scientists use CRISPR to treat chronic pain

Written byAparna Nathan, PhD
| 5 min read
Ana Moreno
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

When Ana Moreno started her PhD in bioengineering at the University of California, San Diego, she wanted to design gene therapies for hard-to-treat diseases. But targeting the genome seemed like a heavy-handed solution for diseases that involved more nuanced changes in gene expression, such as chronic pain.

Instead, she used an approach called CRISPR-dead Cas9 (dCas9), which takes advantage of CRISPR’s ability to home in on a target gene. Once the CRISPR machinery gets there, dCas9 doesn’t make cuts. Instead, it tacks on molecules that either increase or decrease gene expression. In pain mouse models, this strategy reduced the expression of a gene encoding a sodium channel known to be overactive in chronic pain.1 After CRISPR treatment, the animals appeared to be in less pain.

Now, spun from her PhD research, she has founded a company called Navega Therapeutics to develop this pain-reduction strategy into an alternative to addictive opioids.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Aparna Nathan, PhD

    Aparna is a freelance science writer with a PhD in bioinformatics and genomics from Harvard University. She uses her multidisciplinary training to find both the cutting-edge science and the human stories in everything from genetic testing to space expeditions. She was a 2021 AAAS Mass Media Fellow at the Philadelphia Inquirer. Her writing has also appeared in Popular Science, PBS NOVA, and The Open Notebook.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo