When Ana Moreno started her PhD in bioengineering at the University of California, San Diego, she wanted to design gene therapies for hard-to-treat diseases. But targeting the genome seemed like a heavy-handed solution for diseases that involved more nuanced changes in gene expression, such as chronic pain.
Instead, she used an approach called CRISPR-dead Cas9 (dCas9), which takes advantage of CRISPR’s ability to home in on a target gene. Once the CRISPR machinery gets there, dCas9 doesn’t make cuts. Instead, it tacks on molecules that either increase or decrease gene expression. In pain mouse models, this strategy reduced the expression of a gene encoding a sodium channel known to be overactive in chronic pain.1 After CRISPR treatment, the animals appeared to be in less pain.
Now, spun from her PhD research, she has founded a company called Navega Therapeutics to develop this pain-reduction strategy into an alternative to addictive opioids.
...