Gene Drive’s Achilles Heel

Rare genetic variants could blunt efforts to destroy pest populations.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, ERIC DAY, VIRGINIA TECH, BLACKSBURG, VAGene drive is a technology that could squelch insect-borne diseases, by forcing deleterious traits engineered into the animals’ DNA to spread throughout populations by selective inheritance. Researchers have shown gene drive is possible in the lab, but there appears to be a catch: reporting in Science Advances last week (May 19), scientists found genetic variations in the sites targeted for CRISPR-based editing can render the intervention useless.

“Although rare, these naturally occurring genetic variants resistant to CRISPR are enough to halt attempts at population control using genetic technology, quickly returning wild populations to their earlier, ‘pre-CRISPR’ numbers,” said coauthor Michael Wade of Indiana University, in a press release.

And these variants aren’t researchers’ only challenge. Wade and his colleagues wrote in their paper that “mild inbreeding, which is a characteristic of many disease-vectoring arthropods,” had the same effect as these alleles that cause resistance to CRISPR.

The researchers set out to test how genetic variation might affect the efficacy of gene drive in the flour beetle, Tribolium castaneum. Using CRISPR, they targeted several genes in the beetle genome with the intent of harming the animal’s fitness. But rather than observing the gene ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo