Genome Data Enable Capture of Elusive Microbes

Using reverse genetics, researchers create antibodies to reel in previously uncultured bacteria.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, BLACKJACK3D

Bacteria and archaea make up most of the living world, but the vast majority of species, including some that are intimately associated with humans, have never been isolated or cultured.

Sequencing of DNA from natural microbe populations has allowed the identification of previously unknown taxa and in some cases provided detailed genomic information about the organisms. But having sequence data is “like having the parts list” for a machine, says microbiologist Karsten Zengler of the University of California, San Diego. This alone “does not tell you what this machine will do.”

For a better understanding of a microbe’s physiology and functions, researchers need to study living specimens, or at least whole cells. To that end, microbial geneticist Mircea Podar of Oak Ridge National Laboratory and colleagues are examining the sequence data of uncultured microbes to design tools with which to capture the bugs.

Focusing on bacteria ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

January/February 2020

A Light in the Dark

Unpacking the Complex Neurobiology of Suicide

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies