Growing New Neurons

Brain cells called pericytes can be reprogrammed into neurons with just two proteins, pointing to a novel way to treat neurodegenerative disorders.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Pericytes, Image courtesy of M. Karow et al., 2012Making new neurons in the brain may not be as hard as once believed. Using just two proteins and without any cell divisions, scientists from Ludwig-Maximilians University Munich succeeded in reprogramming brain cells known as pericytes into neurons in both cultured cells from humans and mice. The findings, published today (October 4) in Cell Stem Cell, could have implications for patients with degenerative brain disorders.

“We are not there yet, but the hope is that we can eventually treat neurodegenerative diseases like Parkinson’s by in situ reprogramming,” said Ludwig-Maximilians’ Benedikt Berninger, lead author on the study.

Since 2011, other scientists including Marius Wernig, a stem cell biologist from the Stanford School of Medicine, have transformed skin cells directly into neurons using three or four proteins. But the conversion was performed in vitro, and such cells would still have to be implanted into the brain via invasive surgeries to replace the dying neurons of Parkinson’s or Alzheimer’s patients. Berninger’s team has now accomplished the same feat using other cells found in the brain, making it theoretically possible to induce the transformation in vivo.

“It is an exciting paper,” said Wernig. “This ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ed Yong

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo