Gut Microbes Need Fiber, Too

A low-fiber diet decimated the diversity of bacterial species in mice colonized with human gut microbes in a recent study.

Written byKaren Zusi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, POGREBNOJ-ALEXANDROFFHumans have coevolved with microbes for thousands of years, but the profiles of the gut microbiome in those living on a Western-style diet and humans living hunter-gatherer or mixed subsistence lifestyles are vastly different. A mouse study, led by microbiologists Justin and Erica Sonnenburg of Stanford University, now suggests that an underlying reason for this variation could be the differing amounts of fiber between the two populations’ diets. The team’s results were published today (January 13) in Nature.

“There’s definitely something going on right now in our Western population that’s progressive in terms of disease. None of that is happening in these traditional populations,” said Justin Sonnenburg. “There are many things that differentiate us, but I think one of the major candidates for what could contribute to that is the massive difference in the gut microbiota.”

To simulate the effects of a low-fiber diet on the gut microbiome, the researchers fed 10 germ-free mice fecal samples from a 36-year-old American man. The donor microbes quickly colonized the animals’ gastrointestinal tracts. The team then divided the mice into two groups—one fed a diet rich in fiber from various plants, the other given a low-fiber diet—and followed the animals for seven weeks.

At the start ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo