Hearing Discrepancy Probed

Common in vitro experiments have distorted the true mechanics of mammalian hair cell stereocilia.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

BENDING BUNDLES: In vivo, hair cells’ stereocilia move in a concerted manner against the tectorial membrane (1). In vitro, the tectorial membrane is removed to allow for stimulation by a probe (2 and 3). However, under low pressure conditions the stereocilia splay in response to the stimulation, and the full bundle is not activated (2). To mimic in vivo conditions, the pressure must be higher, which artificially inflates hair cells’ threshold for stimulus response in vitro (3).© LUCY READING-IKKANDA

The paper J.-H. Nam et al., “Underestimated sensitivity of mammalian cochlear hair cells due to splay between stereociliary columns,” Biophys J, 108:2633-47, 2015. A sound wave that hits your ear can only be perceived after it has been converted from mechanical to electrical energy through a process called mechanotransduction, which is carried out by hair cells within the cochlea, the snail shell–shape canal of the inner ear. To study hair cells, researchers typically excise a portion of the cochlea and use a tiny probe to stimulate bundles of stereocilia that protrude from the tops of the hair cells into the central duct of the cochlea. Stereocilia movement opens up potassium ion channels on the hair cell membrane, resulting in a change in membrane voltage, which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours