Hormone Loss Prevents Obesity and Diabetes in Mice

Asprosin—involved in a rare disease called neonatal progeroid syndrome—targets neurons to stimulate appetite, and blocking the hormone wards off weight gain in rodents.

Written byAbby Olena, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Two very lean mice heterozygous for a mutation in FBN1 found in a patient with neonatal progeroid syndrome (left), with two wild-type mice (right). All four mice have been fed a high fat diet for three months.NATURE MEDICINE, 2017, C. DUERRSCHMID ET AL.Two people with a rare genetic disorder have helped shed light on the fundamental neuroscience of appetite and, scientists say, opened up a new target for potential obesity treatments. Neonatal progeroid syndrome (NPS) affects only a handful of people worldwide. The most telling features of the condition are an aged appearance due to an absence of the fat layer under the skin and extreme thinness.

Researchers report in in Nature Medicine today (November 6) that a glucose-releasing hormone involved in the disease crosses the blood-brain barrier and homes in on neurons that regulate appetite in mice. The study suggests it might be possible to target the hormone, asprosin, in the treatment of diabetes and obesity.

“Rare diseases with extreme phenotypes like this are very valuable to learn important things that then apply to more common diseases,” says coauthor and medical geneticist Atul Chopra of Baylor College of Medicine in Houston, Texas.

It’s fascinating to find something that appears to be a major new hormone in energy homeostasis from studying patients first, rather than mouse models.—Roger Cone,
University of Michigan

Chopra and colleagues showed in a previous study that patients with ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research