How Longevity Is Passed On

For the first time researchers have shown that epigenetic changes that increase lifespan can be inherited across multiple generations.

Written byCristina Luiggi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Caenorhabditis elegansFLICKR, SNICKCLUNK

How long we live may be a function not only of our genetics and the environment, but of our ancestors’ epigenetics as well, a study published today (October 19) in Nature suggests. The researchers found that epigenetic modifications that extended lifespan in worms can be passed down across multiple generations.

Transgenerational epigenetic inheritance has been reported for a variety of traits across a number of species—the color of flowers in plants, eye color in Drosophila, and fur color in mice are all known to be epigenetically inherited, for example. But “this is the first time this has been linked to longevity,” said molecular geneticist William Kelly, who researches chromatin organization and germline maintenance at Emory University but who was not involved in the study.

How ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH