How Stress is Inherited

Under stressful conditions, a transcription factor in flies turns on genes by releasing its hold on tightly wound DNA, a new study suggests.

Written byTia Ghose
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Recent research has shown that stressed parents can pass on epigenetic changes to offspring that influence their risk of disease, but the process behind this transmission remained a mystery. Now, a study published last month (June 21) in Cell shows that when flies are under stress, a transcription factor releases its hold on tightly wound regions of DNA called heterochromatin, allowing them to unravel and be copied.

“The really interesting aspect to the study is that the effects on heterochromatin can be passed on to the kids,” said Oliver Rando, a geneticist at the University of Massachusetts Medical School, who was not involved in the research. The findings echo similar results in yeast, suggesting this molecular pathway for epigenetic inheritance is conserved across species including ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH