How to Track Metabolites in Tissues Using NMR

Whether it’s aligning software or prepping samples, researchers share their tips for studying the metabolome with this underused approach.

Written byKatherine Bourzac
| 7 min read
Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

“If you want to understand the state of a living thing, the best thing to do is to look at the instantaneous concentration of all the chemicals [it produces],” says Jeffrey Hoch, a structural biologist and biophysicist at the University of Connecticut. The most widely used technique for painting this chemical picture, called the metabolome, is mass spectrometry. But metabolomics researchers such as Hoch say biologists should also get hip to the advantages of a somewhat underused technique, nuclear magnetic resonance (NMR) spectroscopy.

The strength of the NMR signal is proportional to the amount of a metabolite in the sample—be it serum, tissue in vitro, or a live mouse. NMR has lower sensitivity than mass spec, but that’s not a problem when looking at abundant metabolites—and NMR has unique advantages. The method doesn’t destroy samples, and sample prep is relatively straightforward.

Researchers can use metabolic signatures traced by NMR to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

August 2018

Conscious Rodents?

The complex ethics of transplanting human brain organoids into rats and mice

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo