Image of the Day: Moth Movement

Neuronal signal timing is crucial for muscle coordination during flight.

Written byEmily Makowski
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: Manduca sexta hooked to a tether as it flies toward a plastic “flower”
ROB FELT, GEORGIA TECH

When a hawk moth (Manduca sexta) hovers around a flower to sip nectar, it uses flight muscles that are coordinated by the timing of neuronal signals down to the millisecond, according to a study published in PNAS December 16.

A hawk moth’s flight muscles are controlled by only a few motor neurons. Researchers led by neuromechanist Simon Sponberg at Georgia Tech tracked the activity of these neurons by inserting small wires into the moths’ exoskeletons. The insects were tethered in place near a moving 3D-printed plastic flower that they attempted to fly toward. As the moths flexed their muscles, a computer recorded the action potentials generated by the neurons, and an accelerometer measured torque generated by muscle movements. Together, these measurements provided a picture of neuronal activity during flight.

The researchers found that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH