ABOVE: Left panel: Considerable numbers of invasive cancer cells with Sox10 (red) in them can be found outside of mouse tumors in vivo (green cells, outlined). Right panel: The invasive cells are proximal to blood vessels (white).
SALK INSTITUTE/SANFORD CONSORTIUM FOR REGENERATIVE MEDICINE

Agene known to be active in fetal cells is also expressed in aggressive forms of breast cancer, pointing to a possible explanation for cancer cells’ ability to regain the potential to evolve into other types and metastasize to different regions in the body. The findings were published last month (August 30) in Cancer Cell.

The gene in question, Sox10, controls several processes, including cell development and movement, as a transcription factor.

The researchers noticed that breast cancer cells from humans and mice with abundant Sox10 reverted to undifferentiated variants that turned invasive and freely migrated. In a mouse experiment, they observed that disrupting Sox10...

C. Dravis et al., “Epigenetic and transcriptomic profiling of mammary gland development and tumor models disclose regulators of cell state plasticity,” Cancer Cell, doi:10.1016/j.ccell.2018.08.001, 2018.

Clarification (September 10): Upon request, we changed the credit for the image from Salk Institute to Salk Institute/Sanford Consortium for Regenerative Medicine. 

Interested in reading more?

The Scientist ARCHIVES

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!