Image of the Day: Biomimetic Arteries

A newly engineered synthetic blood vessel offers a novel platform for developing drugs that treat high blood pressure.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Researchers at Johns Hopkins University have created biomimetic microvessels that model the small muscular pulmonary arteries implicated in hypertension, according to a study published on March 25 in Science Advances. The authors report in the paper that these bioengineered arteries closely replicate the patterns and layering of human smooth muscle cells, extracellular matrix, and endothelial cells, improving upon animal models that are unable to recreate human physiology, structure, and function.

This potential testing model for hypertension drugs marks an “important step toward an in vitro platform for the study of vascular wall biology and arteriolar fluid mechanics in an anatomically correct and human tissue,” the researchers write in their conclusion, and may be applicable to other diseases, such as stroke and diabetes, that also involve pathologies at the microvascular level.

Q. Jin et al., “Biomimetic human small muscular pulmonary arteries,” Science Advances, doi:10.1126/sciadv.aaz2598, 2020.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amy Schleunes

    A former intern at The Scientist, Amy studied neurobiology at Cornell University and later earned her MFA in creative writing from the University of Iowa. She is a Los Angeles–based writer, editor, and communications strategist who collaborates on nonfiction books for Harper Collins and Houghton Mifflin Harcourt, and also teaches writing at Johns Hopkins University CTY. Her favorite projects involve sharing the insights of science and medicine.

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit