Image of the Day: Sticky Telomeres

Telomeres in cancer cells exposed to oxidative stress got shorter and stickier.

Written byChia-Yi Hou
| 1 min read
telomere length sticky stuck chromosome aging apoptosis cancer cell oxidative stress

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: Human cancer cells with damaged telomeres form chromatin bridges between daughter cells when going through mitosis. Chromatin is stained in blue and telomeres in green.
FOUQUEREL ET AL.

To see how stress on telomeres can lead to cell aging and death, researchers put oxidative stress on human cancer cells by adding light-activated molecules that release free radicals that bind to telomeres. The telomeres got shorter and stuck to each other after the treatment, the authors reported Tuesday (May 14) in Molecular Cell. When the cells with damaged telomeres tried to divide, they formed chromatin bridges between daughter cells, which were not able to complete cell division properly and eventually died through apoptosis.

“If we can understand what causes telomere shortening and how cells compensate for that, then we’ll be in a better position to design intervention strategies that protect telomeres in healthy cells and target telomeres in cancer cells,” says ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH