Immune Checkpoint Found Lacking in Type 1 Diabetes

Boosting levels of a the immunosuppressive protein PD-L1 in blood stem cells halts diabetes in a mouse model of the disease.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Watch the full video hereEUREKALERT, ANDREA PANIGADAType 1 diabetes is caused by the destruction of insulin-producing ß cells of the pancreas by the body’s own T cells. But why do these cells wreak such havoc in the first place and how might they be stopped?

A report in Science Translational Medicine today (November 15) suggests the immune systems of both diabetic mice and humans lack a suppressor protein called programmed death ligand 1 (PD-L1), which normally keeps T cell activity in check. Raising levels of PD-L1 in immune stem cells restored these cells’ ability to tame T cells in culture and to prevent hyperglycemia when transferred into diabetic mice.

“This is great work,” says Camillo Ricordi of the Diabetes Research Institute Foundation in Florida who was not involved with the study. “The whole name of the game now [in diabetes research] is modulating the immune response and trying to restore self-tolerance . . . so they are right on target with their approach,” he says. “I’m looking forward to seeing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH