Immune Checkpoint Found Lacking in Type 1 Diabetes

Boosting levels of a the immunosuppressive protein PD-L1 in blood stem cells halts diabetes in a mouse model of the disease.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Watch the full video hereEUREKALERT, ANDREA PANIGADAType 1 diabetes is caused by the destruction of insulin-producing ß cells of the pancreas by the body’s own T cells. But why do these cells wreak such havoc in the first place and how might they be stopped?

A report in Science Translational Medicine today (November 15) suggests the immune systems of both diabetic mice and humans lack a suppressor protein called programmed death ligand 1 (PD-L1), which normally keeps T cell activity in check. Raising levels of PD-L1 in immune stem cells restored these cells’ ability to tame T cells in culture and to prevent hyperglycemia when transferred into diabetic mice.

“This is great work,” says Camillo Ricordi of the Diabetes Research Institute Foundation in Florida who was not involved with the study. “The whole name of the game now [in diabetes research] is modulating the immune response and trying to restore self-tolerance . . . so they are right on target with their approach,” he says. “I’m looking forward to seeing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis