Improving Gene Therapy with In Vivo Selection

Scientists have developed a way to selectively expand genetically modified hepatocytes in mice.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

V. ALTOUNIAN / SCIENCE TRANSLATIONAL MEDICINE (2016)Gene therapy offers promise for treating genetic disorders, but the efficiency of the procedure is often too low to be of therapeutic value. Sean Nygaard of Oregon Health & Science University (OHSU) in Portland and colleagues have now shown that liver cells genetically modified to be resistant to a toxic drug can be selectively expanded in living mice increased transgene expression up to 1,000-fold. The new approach, reported today (June 8) in Science Translational Medicine, could also be used in bone marrow, intestine, skin, or kidney tissue, the researchers wrote in their study.

“Gene therapy is a field of great therapeutic potential, but also one of great risk,” Nygaard told reporters during a June 7 press briefing.

Previously, scientists have used recombinant adeno-associated viral (rAAV) vectors have been to treat liver disorders such as hemophilia with some success. However, low doses of viral vectors do not usually lead to efficient transduction, and high doses can produce an immune response and possibly activate oncogenes—making it a risky option for treatment. For some diseases tested, genetically modified hepatocytes have been found to outcompete defective cells on their own, but this has not been the case with most liver disorders.

To overcome these problems, Nygaard and colleagues found a way to selectively expand genetically modified hepatocytes in vivo in mice. First, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies