Improving Gene Therapy with In Vivo Selection

Scientists have developed a way to selectively expand genetically modified hepatocytes in mice.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

V. ALTOUNIAN / SCIENCE TRANSLATIONAL MEDICINE (2016)Gene therapy offers promise for treating genetic disorders, but the efficiency of the procedure is often too low to be of therapeutic value. Sean Nygaard of Oregon Health & Science University (OHSU) in Portland and colleagues have now shown that liver cells genetically modified to be resistant to a toxic drug can be selectively expanded in living mice increased transgene expression up to 1,000-fold. The new approach, reported today (June 8) in Science Translational Medicine, could also be used in bone marrow, intestine, skin, or kidney tissue, the researchers wrote in their study.

“Gene therapy is a field of great therapeutic potential, but also one of great risk,” Nygaard told reporters during a June 7 press briefing.

Previously, scientists have used recombinant adeno-associated viral (rAAV) vectors have been to treat liver disorders such as hemophilia with some success. However, low doses of viral vectors do not usually lead to efficient transduction, and high doses can produce an immune response and possibly activate oncogenes—making it a risky option for treatment. For some diseases tested, genetically modified hepatocytes have been found to outcompete defective cells on their own, but this has not been the case with most liver disorders.

To overcome these problems, Nygaard and colleagues found a way to selectively expand genetically modified hepatocytes in vivo in mice. First, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research