In Failing Hearts, Cardiomyocytes Alter Metabolism

While the heart cells normally burn fatty acids, when things go wrong ketones become the preferred fuel source.

Written byAmanda B. Keener
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

CHANGE-UP: Healthy cardiomyocytes (left panel) mainly use fatty acids as their energy source. But in a mouse model of heart failure and in failing human hearts (right panel), cardiomyocytes depend more on ketones for energy.
See full infographic: WEB
THE SCIENTIST STAFF

The paper
G. Aubert et al., “The failing heart relies on ketone bodies as a fuel,” Circulation, 133:698-705, 2016.

As organs go, the heart is an energy hog. To keep it fueled, mitochondria within cardiomyocytes (heart muscle cells) constantly churn out ATP as a product of the citric acid cycle. In the heart, most of the cycle’s substrates come from the metabolism of fatty acids, but the organ can also make use of other compounds such as lactate or ketones.

When Daniel Kelly of Sanford Burnham Prebys Medical Discovery Institute in Orlando, Florida, learned that some rare genetic disorders both cause dysfunction of the heart muscle and simultaneously disrupt fatty acid oxidation and increase ketone metabolism, he wondered if ketones might play a role in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

June 2016

Found in Translation

Some supposedly nonfunctional RNA molecules encode functional peptides

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH