Inactive Actin

Clathrin-mediated endocytosis shuts down during mitosis in eukaryotic cells because all of the required actin is hoarded by the cytoskeleton.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

RESTORATION HARDWARE: During interphase, mammalian cells have low membrane tension, and clathrin-mediated endocytosis (CME) proceeds normally with no special need for actin (1). During mitosis, membrane tension is high, the actin (purple) is sequestered at the cell cortex, and CME can’t proceed because actin is required to help stretch the clathrin-coated pits to form full vesicles (2). Freeing up some of the actin during mitosis allows the protein to help form clathrin-coated vesicles, restoring CME
(3).
© KIMBERLY BATTISTA

The paper
S. Kaur et al., “An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis,” eLife, 3:e00829, 2014.

For decades, scientists observed clathrin-mediated endocytosis (CME)—the process of forming vesicles to pull protein cargo into a cell—ceasing during mitosis in mammalian cells. But they didn’t know why. From prophase to anaphase, shallow clathrin-coated pits form at the plasma membrane, but the cell never internalizes them.

Two main theories have tried to explain how endocytosis is inhibited. After finding that proteins involved in endocytosis are phosphorylated during mitosis, researchers proposed that phosphorylation of crucial components turns off CME. The second theory suggested that elevated tension in the plasma membrane prevents clathrin-coated pits from pinching off into closed vesicles. But scientists had not reached a consensus.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research