Induced Pluripotent Stem Cells Show Signs of Donor Age

iPSCs created through the reprogramming of human somatic cells retain genomic marks of the donor’s age.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, CSIROAfter human somatic cells are reprogrammed into induced pluripotent stem cells (iPSCs), the resulting cells retain both genetic and epigenetic indicators of the age of the person who donated the somatic-cell progenitors, scientists have found. Ali Torkamani, Kristin Baldwin, and their colleagues at the Scripps Research Institute in California have found that iPSC genomes have methylation patterns that reflect donor age. In general, the number of mutations those pluripotent cells carry increases with donor age—until around age 90, that is, when the number of mutations decreases, the researchers found. These results, published today (December 12) in Nature Biotechnology, have implications for autologous transplantation—creating a replacement tissue from a patient’s own cells—something that older people are more likely to need, the authors noted.

“If you’re getting cells from these older donors, these seed cells that you use for reprogramming already have some accumulation of mutation load, and so that is actually very important evidence, especially when they are looking at the potential functions of these mutations,” University of California, San Diego, bioengineer Kun Zhang, who was not involved in the study, told The Scientist. Every cell line the researchers examined had at least one mutation in its exomic DNA and some of those mutations were potentially deleterious, even oncogenic, Zhang pointed out. “These damaging mutations might have some unexpected functional consequence when we’re looking at the clinical applications.”

“The study highlights the fact that there is some age-associated risk of pathogenic variants in iPSCs,” Torkamani told The Scientist.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours