Inflammation Data Clash

Identical datasets yield opposite conclusions on the use of mice as models of human inflammation.

kerry grens
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA, DOUG BECKERSIn 2013, a large group of collaborators published a paper in PNAS concluding that genomic responses to inflammatory stress in mice don’t correlate well with those in humans. “The prevailing assumption—that molecular results from current mouse models developed to mimic human diseases translate directly to human conditions—is challenged by our study,” Junhee Seok, who’s now at the Northwestern University Feinberg School of Medicine, and his colleagues wrote in their paper.

Fast forward to last week, and another study, using the very same data, reached the opposite conclusion.

“Here we re-evaluated the same gene expression datasets used in the previous study by focusing on genes whose expression levels were significantly changed in both humans and mice,” Keizo Takao and Tsoyosji Miyakawa wrote in their recent paper, also published in PNAS. “Contrary to the previous findings, the gene expression patterns in the mouse models showed extraordinarily significant correlations with those of the human conditions.”

So what gives?

According to a press release from Fujita Health University, where Miyakawa is based, the original study compared all the genomic changes, regardless of whether the involved genes only responded to the stress in one of the species. Such an approach ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome