Infographic: The Role of Circadian Clocks in Muscle

Timekeepers in muscle help mediate metabolism, and may influence neurological processes such as sleep.

Written byDiana Kwon
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK, TIJANA87

The muscles’ intrinsic timekeepers keep the body’s metabolic pathways in sync with activity and rest cycles during the day. The muscle clock is regulated by feeding and physical activity—behaviors controlled in part by the suprachiasmatic nucleus (SCN), the body’s so-called master clock. Researchers have found that the muscle’s intrinsic rhythms could be tweaked in mice by changing the timing of feeding (Gene Dev, 14:2950–61, 2000), which is an important cue for other peripheral clocks as well. Scheduled exercise can also tune the muscle’s clocks, affecting the expression of circadian genes such as those involved in maintaining the muscles’ contractile properties (Med Sci Sports Exerc, 44:1663–70, 2012). Conversely, disrupting muscle clocks can affect sleep, suggesting that rhythms in the body’s peripheral tissues feedback on the brain, possibly through circulating hormones or other chemical messengers.

One of the most clearly defined roles of a muscle’s clock is maintaining ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies