Infographic: The Role of Circadian Clocks in Muscle

Timekeepers in muscle help mediate metabolism, and may influence neurological processes such as sleep.

Written byDiana Kwon
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK, TIJANA87

The muscles’ intrinsic timekeepers keep the body’s metabolic pathways in sync with activity and rest cycles during the day. The muscle clock is regulated by feeding and physical activity—behaviors controlled in part by the suprachiasmatic nucleus (SCN), the body’s so-called master clock. Researchers have found that the muscle’s intrinsic rhythms could be tweaked in mice by changing the timing of feeding (Gene Dev, 14:2950–61, 2000), which is an important cue for other peripheral clocks as well. Scheduled exercise can also tune the muscle’s clocks, affecting the expression of circadian genes such as those involved in maintaining the muscles’ contractile properties (Med Sci Sports Exerc, 44:1663–70, 2012). Conversely, disrupting muscle clocks can affect sleep, suggesting that rhythms in the body’s peripheral tissues feedback on the brain, possibly through circulating hormones or other chemical messengers.

One of the most clearly defined roles of a muscle’s clock is maintaining ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH