Infographic: The Role of Circadian Clocks in Muscle

Timekeepers in muscle help mediate metabolism, and may influence neurological processes such as sleep.

Written byDiana Kwon
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK, TIJANA87

The muscles’ intrinsic timekeepers keep the body’s metabolic pathways in sync with activity and rest cycles during the day. The muscle clock is regulated by feeding and physical activity—behaviors controlled in part by the suprachiasmatic nucleus (SCN), the body’s so-called master clock. Researchers have found that the muscle’s intrinsic rhythms could be tweaked in mice by changing the timing of feeding (Gene Dev, 14:2950–61, 2000), which is an important cue for other peripheral clocks as well. Scheduled exercise can also tune the muscle’s clocks, affecting the expression of circadian genes such as those involved in maintaining the muscles’ contractile properties (Med Sci Sports Exerc, 44:1663–70, 2012). Conversely, disrupting muscle clocks can affect sleep, suggesting that rhythms in the body’s peripheral tissues feedback on the brain, possibly through circulating hormones or other chemical messengers.

One of the most clearly defined roles of a muscle’s clock is maintaining ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series